IMPLEMENTASI TEKNIK KEANDALAN UNTUK MENGOPTIMALKAN INTERVAL PERAWATAN PADA SISTEM COAL FEEDER (Studi Kasus: PT. PJB UP Paiton)

THE RELIABILITY TECHNICAL IMPLEMENTATION TO OPTIMIZE THE MAINTENANCE INTERVAL ON THE COAL FEEDER SYSTEMS (Case Study: PT. PJB UP Paiton)

Farisa Islamidina¹⁾, Sugiono²⁾, Remba Yanuar Efranto³⁾

Program Studi Teknik Industri Fakultas Teknik Universitas Brawijaya Jalan MT. Haryono 167, Malang 65145, Indonesia

E-mail: farisa.dina08@gmail.com¹⁾, sugiono_ub@ub.ac.id²⁾, remba@ub.ac.id³⁾

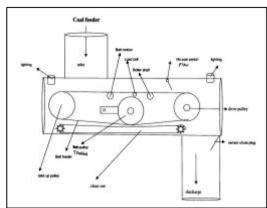
Abstrak

PT PJB Unit Pembangkitan Paiton merupakan perusahaan yang memanfaatkan batu bara dan air. Salah satu cara menjaga aset vital perusahaan adalah dengan melakukan perawatan. Namun, masih sering terjadi kerusakan pada salah satu sistemnya. Frekuensi kerusakan pada mesin Coal Feeder yang menyebabkan kerugian bagi perusahaan secara finansial dan kapasitas produksinya. Penelitian ini menggunakan metode Reliability Centered Maintenance II (RCM II). Metode ini digunakan untuk menentukan jadwal perawatan dan interval waktu perawatan. Penelitian ini memadukan metode berupa RCM II dan FMEA untuk menilai resiko kegagalan fungsi pada Coal Feeder. Hasil dari penelitian ini diketahui terdapat 18 bentuk kegagalan. Nilai Risk Priority Number (RPN) tertinggi sebesar 15 terdapat pada jenis kerusakan berupa shearpin putus, clean out macet, signal palsu cute plug, belt feeder aus, sirip bet feeder aus, belt feeder robek. Untuk mengantisipasi kegagalan tersebut dilakukan dengan memberikan rekomendasi jadwal perawatan pada mesin Coal Feeder. Solusi perawatan pada mesin Coal Feeder adalah dalam bentuk lembar kontrol. Sedangkan untuk biaya perawatannya berada pada kisaran Rp.3.382,83 - Rp. 240.015,38 pada setiap jenis kegagalan. Peningkatan keandalan pada Coal Feeder antara 1,56% - 57,22%.

Kata kunci: Coal Feeder, Perawatan, FMEA, Reliability Centered Maintenance II, Relaibility

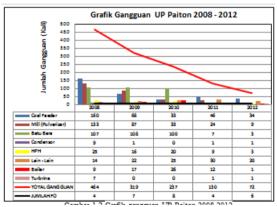
1. Pendahuluan

Perawatan atau maintenance merupakan salah satu fungsi utama usaha, dimana fungsifungsi lainnya seperti pemasaran, produksi, dan sumber dava keuangan. (Sudradjat, 2011). Maintenance mencangkup semua aktivitas yang berkaitan dengan menjaga semua peralatan sistem agar dapat bekerja (Heizer dan Render, 2010). Fungsi perawatan perlu dijalankan secara baik, karena dengan dijalankannya fungsi tersebut fasilitas-fasilitas produksi akan kondisinya. Peranan perawatan terhadap mesin dan peralatan serta fasilitas lainnya menjadi sangat penting dalam menunjang beroperasinya suatu industri. Oleh karena itu, aktivitas perawatan merupakan bagian integral dari suatu industri untuk meningkatkan produktivitas dan efisiensi (Sudradjat, 2011).


Apabila suatu mesin mengalami kerusakan, maka proses produksi akan terganggu dan perusahaan akan mengalami kerugian waktu produksi (Pujotomo dan Septiawan, 2007). Dalam hal ini penerapan

teori keandalan dapat digunakan untuk memperkirakan peluang suatu sistem dapat melaksanakan fungsinya secara maksimal (Sutanto, 2012).

Seiring meningkatnya kebutuhan listrik di Pulau Jawa dan Bali, maka PT. Pembangkitan Jawa-Bali Unit Pembangkitan Paiton (PT. PJB-UP Paiton) harus mengoptimalkan kapasitas produksinya. Salah satu cara untuk mempertahankan mutu dan produktifitas sistem produksinya adalah dengan memperhatikan masalah perawatan (maintenance) fasilitas produksinya.


Selama ini PT. PJB UP Paiton melakukan perawatan mesin setelah terjadi kerusakan pada suatu mesin (corrective maintenance). Dari beberapa plant yang ada di PT. PJB UP Paiton, mesin Coal Feeder merupakan mesin yang salah satunya sering mengalami gangguan.Letak mesin Coal Feeder berada diantara Silo dan Mill. Fungsi dari mesin Coal Feeder adalah mengalirkan batu bara dari Silo menuju

Mill. Gambar mesin *Coal Feeder* disajikan pada Gambar 1.

Gambar 1. Mesin Coal Feeder

Coal Feeder merupakan mesin yang salah satunya sering mengalami gangguan. Hal ini dapat dilihat pada Gambar 1.2 mengenai grafik data gangguan UP Paiton dari tahun 2008-2012. Berikut ni adalah gambar mengenai Grafik gangguan UP Paiton 2008-2012 terdapat pada Gambar 2.

Gambar 2. Grafik gangguan UP Paiton 2008-2012

Mesin Coal Feeder termasuk mesin yang selalu memiliki gangguan dengan jumlah terbanyak dibandingkan dengan beberapa mesin lainnya. Seperti pada tahun 2008, 2011. dan 2012 mesin Coal Feeder berada di tingkat pertama berdasarkan jumlah gangguan yang Gangguan ini disebabkan oleh beberapa faktor, yang salah satu penyebab yang paling sering terjadi adalah karena kerusakan. Agar hal tersebut tidak selalu terjadi, salah satunya dengan menganalisis keandalan suatu komponen sistem produksi penjadwalan dan menentukan waktu perawatan (Sutanto, 2012). Keandalan adalah ukuran kemampuan suatu komponen atau peralatan untuk beroperasi terus-menerus

tanpa adanya gangguan atau kerusakan (Ebelling, 1997).

Berdasarkan uraian diatas. agar keandalan mesin Coal Feeder semakin baik diperlukan analisa keandalan untuk menentukan interval perawatan. Hasil analisa keandalan pada komponen Coal Feeder digunakan untuk menentukan nilai waktu antar kerusakan dan waktu antar perbaikan, yang nantinya sebagai dasar penentuan kebijakan atau strategi perawatan yang sesuai dengan mesin Coal Feeder di PT. PJB UP Paiton.

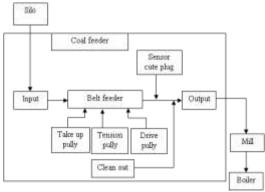
Berdasarkan latar belakang masalah tersebut, maka rumusan masalah yang akan diteliti sebagai berikut:

- 1. Apa saja komponen kritis yang menjadi penyebab utama terjadinya kerusakan di mesin *Coal Feeder*?
- 2. Jenis perawatan apa yang tepat untuk mengantisipasi terjadinya kegagalan jika kegagalan tersebut terjadi?
- 3. Bagaimana interval perawatan yang sesuai dengan mesin *Coal Feeder* di PT. PJB UP Paiton?

2. Metode Penelitian

Pada bagian ini akan dijelaskan mengenailangkah-langkah yang dilakukan dalampenelitian. Secara sistematis, tahapan yangdilakukan dalam penelitian ini adalah sebagaiberikut:

- 1. Pembuatan *Functional Block Diagram* (FBD), dimana FBD sebagai langkah awal dalam menggambarkan sistem aliran kerja pada komponen *Coal Feeder*. Digambarkan dengan blok-blok yang saling berhubungan antar komponen *Coal Feeder* sehingga membentuk satu kesatuan fungsi dalam sistem kerja.
- 2. Pembuatan Failure Mode and Effect Analysis (FMEA), yaitu menentukan kegagalan fungsi, mode kegagalan, dan akibat yang ditimbulkan pada setiap komponen Coal Feeder.
- 3. Penentuan Risk Priority Number (RPN), setelah mengetahui mode kegagalan masing-masing komponen Coal Feeder melalui informasi dari FMEA, selanjutnya melakukan penilaian resiko berdasarkan 3 kriteria penilaian RPN.
- 4. Pembuatan RCMII *Decision Worksheet* untuk menentukan kebijakan kegiatan perawatan yang sesuai dengan penggunaan RCM II *Decision Diagram*.


- 5. Pengujiandistribusi terhadapwaktuantarkerusakan (T_F) danwaktuantarperbaikan (T_R) pada*Coal Feeder*denganbantuan*software* Minitab 16.
- 6. Penentuan nilai *Mean Time ToFailure* (MTTF) dan *Mean Time to Repair* (MTTR)denganbantuan*software* Minitab 16.
- 7. Perhitungan biaya *maintenance* (C_M) yang terdiri dari gaji kegiatan perawatan, biaya material untuk *preventive maintenance*.
- 8. Perhitungan biaya perbaikan (C_R) yang terdiri dari biaya *man hours* (C_W), biaya konsekuensi operasional (C_O), biaya penggantian komponen (C_F).
- Perhitungan interval perawatan optimal (T_M).
- 10.Penentuan total biaya perawatan (T_C).
- 11.Penentuan nilai keandalan berdasarkan interval perawatan mode kegagalan masing-masing komponen *Coal Feeder*.

3. Hasil dan Pembahasan

Bagian ini berisi penjelasan mengenaipengolahan data serta analisis dari hasilpenelitian yang telah dilakukan.

3.1 Functional Block Diagram (FBD)

Diagram ini akan menggambarkan fungsi yang membentuk suatu sistem aliran kerja dari fungsi alat pendukung Coal Feeder dalam kesatuan blok yang saling berhubungan antara komponen satu dengan yang lainnya sehingga membentuk satu kesatuan fungsi dalam sistem kerja. Gambar 3. menampilkan Functional Block diagram (FBD) Coal Feeder.

Gambar 3. Functional Block Diagram (FBD) pada Sistem Coal Feeder

3.2 Failure Mode and Effect Analysis (FMEA)

Failure Mode and Effect Analysis (FMEA) digunakan sebagai langkah awal untuk melakukan studi terhadap keandalan.

Terdiri dari beberapa tinjauan terhadap komponen – komponen, rakitan dan sub sistem yang kemudian diidentifikasi kemungkinan bentuk kegagalannya, serta penyebab dan efek dari masing-masing kegagalan.

Setelah mengetahui fungsi komponen dan kegagalan fungsi komponen *Coal Feeder*, selanjutnya adalah menyusun FMEA untuk mencari penyebab dan efek yang ditimbulkan dari kegagalan yang terjadi. Berikut ini adalah contoh dari analisa FMEA pada beberapa komponen *Coal Feeder* terdapat pada Tabel 1.

Tabel 1. Failure Modes and Effect Analysis (FMEA) pada Coal Feeder

	:MII		stem: Coal Fe	ede	7				
	FORMATION		ıb sistem:						
WC	ORKSHEET	Fu	ıngsi sub siste	m:	Menyuplai b	atı	ıbara dari <i>Si</i>	lo ke Mill	
No	Equipment		Function	Function Failure			ailure mode	Effect of failure	
1	Belt motion		Alat untuk mengukur kecepatan putaran pada beit feeder	1	Gagal melakukan pengukusan kecepatan	2	roller putus	MWH menurun sebesar 8 % dari 400 MW.	
						3	patah	Sensor akan berhenti dan Coal Feeder mati atau trip, sehingga jumlah produksi MWH menurun sebesar 8 % dari 400 MW.	
2	Load cell		Alat untuk mengukur berat batu bara yang melewati beit feeder	1	Gagal melakukan pengukusan berat batubara	1	Kegagalan fungsi dalam pengukuran	Mempengaruhi jumlah batubara yang masuk ke boiler yang berdampak penghitungan overall efisiensi tidak akurat.	
3	Roller Shaft		Alat penahan beit feeder	1	Gagal bekerja	2	Roller patah Roll macet	Jumlah produksi MWH menurun sebesar 8 % dari 400 MW.	
4	No Coal Switch		Alat untuk menghentika n sistem jika didalam feeder tidak terdapat batubara	1	Gagal melakukan sensor pada batubara	1	Sensor tidak bekerja	Internal combustion di Mill.	

Berdasarkan Tabel 1. secara keseluruhan terdapat 18 betuk kegagalan pada komponen-komponen *Coal Feeder*. Untuk lebih jelasnya terdapat pada Lampiran 1.

3.3 Risk Priority Number (RPN)

Kriteria penilaian RPN dibuat melalui penyesuaian serta persetujuan dari pihak *Engineering* dan pemeliharaan PT PJB Unit Pembangkitan Paiton. Berikut ini adalah contoh dari hasil penilaian RPN untuk *equipment Coal Feeder* pada Tabel 2.

Tabel 2. Failure Modes and Effect Analysis (FMEA) dan Penilaian RPN pada Coal Feeder

			Feeder									
RCN			stem: Coal Feeder									
INF N	ORMATIO		b sistem:	[as	mloi ha4l	da.	Cilo Iro Mil					
	RKSHEET	ru	ıngsi sub sistem: M	lenyı	ipiai batubara	aar	1 <i>Suo</i> ке <i>мш</i>					
N o	Equipment	Function			Function Failure	Failure mode		Effect of failure	s	o	D	RPN
1	Belt Motion	1	Alat untuk mengukur	1	Gagal melakukan	1	Belt motion macet	Jumlah produksi MWH menurun sebesar 8 % dari	1	5	2	10
			kecepatan putaran pada		pengukuran kecepatan	2	Belt motion roller putus	400 MW.	1	5	2	10
			belt feeder			3	Pen sensor patah	Sensor akan berhenti dan Coal Feeder mati atau trip, sehingga jumlah produksi MWH menurun sebesar 8 % dari 400 MW.	1	5	2	10
2	Load cell	1	Alat untuk mengukur berat batu bara yang melewati <i>belt</i> <i>feeder</i>	1	Gagal melakukan pengukuran berat batubara	1	Kegagalan fungsi dalam pengukuran	Mempengaruhi jumlah batubara yang masuk ke boiler yang berdampak penghitungan <i>overall</i> efisiensi tidak akurat.	1	3	2	6
3	Roller Shaft	1	Alat penahan belt feeder	1	Gagal bekerja	1	Roller patah	Jumlah produksi MWH menurun sebesar 8 % dari	1	5	2	10
						2	Roll macet	400 MW.	1	5	2	10
4	No Coal Switch	1	Alat untuk menghentikan sistem jika didalam feeder tidak terdapat batubara	1	Gagal melakukan sensor pada batubara	1	Sensor tidak bekerja	Internal combustion di Mill.	1	4	2	8
5	Drive Pully	1	Motor penggerak	1	Gagal berputar menggerak kan belt feeder	1	Drive pully bergeser	Internal combustion di Mill.	1	3	2	6
				2	Gangguan pada	1	Gearbox macet	Drive pully berhenti Coal Feeder mati atau trip, jumlah	1	4	2	8
					gearbox	2	Oli <i>gearbox</i> rembes	produksi MWH menurun sebesar 8 % dari 400 MW	1	4	2	8
6	Take Up Pully	1	Mengikuti gerak <i>drive</i> pully	1	Gagal berputar	1	Bearing aus	Jumlah produksi MWH menurun sebesar 8 % dari 400 MW	1	2	2	4
7	Belt feeder	1	Pembawa batubara	1	Gagal berputar	1	Belt feeder robek	Batubara tumpah	1	5	3	15
					membawa batubara	2	Belt feeder aus	- Slip - Tidak dapat dikalibrasi	1	5	3	15
						3	Belt feeder kendor	Internal combustion di Mill.Tidak dapat dikalibrasi	1	5	2	10
						4	Sirip <i>belt</i> feeder aus	Belt feeder robek apabila tumpahan terlalu banyak	1	5	3	15
8	Clean Out	1	Sebagai pembersih	1	Gagal melakukan	1	Shearpin putus	Belt feeder robek apabila tumpahan terlalu banyak	1	5	3	15
			batubara yang jatuh berserakan		proses cleaning	2	Clean Out macet	Belt feeder robek apabila tumpahan terlalu banyak	1	5	3	15
9	Sensor cute plug	1	Sebagai sensor jika terjadi penyumbatan	1	Gagal melakukan sensor penyumbat an	1	Muncul signal palsu	Terjadi penyumbatan atau plugging pada output Coal Feeder	1	5	3	15

Tahap selanjutnya yaitu, setelah nilai Risk Priority *Number* (RPN) diperoleh nilai kemudian merepresentasikan **RPN** ke dalam diagram. tersebut Diagram tersebutakan membantu dalam memberikan gambaran kegagalan yang teriadi peralatan Coal Feeder. Gambar menggambarkan diagram nilai RPN pada komponen Coal Feeder

Gambar 4. Diagram nilai RPN pada Komponen *Coal Feeder*

Berdasarkan Gambar 4. dapat diketahui bahwa mode kegagalan yang memiliki nilai RPN tertinggi sebesar 15 adalah belt feeder robek, belt feeder aus, sirip belt feeder aus, shearpin putus, clean out macet dan munculnya signa palsu pada Chute plug.Ke enam mode kegagalan ini memiliki nilai yang karena frekuensi dengan mode kegagalan seperti ini lebih tinggi dan efek ditimbulkan dapat mengakibatkan terhentinva sistem Coal Feeder dan mengurangi kapasitas *output* produksi.

3.4 RCM II Decision Worksheet

Padadecision worksheet ini akan ditentukan jenis kegiatan perawatan yang sesuai untuk setiap failuremodes dari peralatan Coal Feeder, dimana pengisian decision worksheet dibantu dengan RCM II decision diagram. Contoh Hasil dari pengisian RCM II Decision Worksheet terdapat pada Tabel 3.

Tabel 3. RCM II Decision Worksheet pada Coal

Feeder

\$C	MINDS	CHIEN	\neg	SHE		97	m	er					_			Date	There .
	DENZHE		- 1	Page	쩋	w	w	THI	No.	ur tur	Mary 6 To	NOT THE	w	w	war		OF.
-			1000	-	L	54			HI	H	18	Γ.	7				
	Information Reference		latinine	*	1	Draken		=	11	ъ		herina herina		Proposal Tests	lates.	Cash	
×	Equip	*	17	PH	H	1		0	E1	EI DI	E3	Ħ	H		With	(jan)	kr
	Marine Marine	Alar sense penge	opinio.	Mari Market Market	¥	¥	н	۲	H	٧			Ì		Street Control of Table Politics (Market Control of Market Control	27,09	Maint
		ler lerap ler	benday benday benear	Mail medier meller meter	¥	×	н	¥	W	н	¥				Antendried element met.	10,81	Major
		i pada	iscops tec		٧	х	H	٧	W	н	Y				Etalias disease met	10.11	Maior
2	ert.		Deget melanu kan proses prospos wide best best best best es	Engag sins Swego Subst propos subs	-	24	,	٧	v						Schoolskie gra- gradiene wat	dept to	Ode and weeks
1	Natur Skept	NA.		tuler petit	1	20	3	*	×	31	¥.	П	Ú		Street, or discord	10.46	Maio
		produc n.dol heater	Stagat Sesionja	Red majer	1	20.	3	Y	Y						Schoolsted (m. assessment met	Spread darps to to the	Mean

RCM II untuk membantu menentukan concequence dan proactive task yang akan diberikan. Tindakan proactive task yang akan diberikan pada masing-masing bentuk kegagalan adalah secara teknis dan mudah dilakukan,dimana untuk mencapai kondisi tersebut terdapat beberapa persyaratan yang ada di dalam metode RCM II.

Setelah itu menentukan jenis perawatan yang tepat pada berbagai jenis kegagalan pada komponen-komponen *Coal Feeder*. Dalam penyusunan *task-task* tersebut juga melakukan *brainstorming* dengan supervisor *engineering* dan pemeliharaan (*maintenance*) yang berwenang di perusahaan. *Task* yang telah disusun secara keseluruhan dapat dibedakan menjadi 3 bagian sebagai berikut:

1. Scheduled discard task

Sebagai contoh kerusakan komponen yang menghendaki dilakukannya discard task adalah kerusakan Belt motion roller putus, pen sensor belt motion patah, roller shaft patah, Drive Pulley bergeser, take up pulley, belt feeder robek, belt feeder aus, sirip belt feeder aus, dan shearpin putus.

2. Scheduled restoration task

Kegagalan komponen pada Coal Feeder yang diatasi dengan scheduled restoration task adalah belt motion macet, no coa switch, sensor Chute plug, dan clean out macet. Misalnya pada no coal switch dengan jenis kegagalan sensor tidak dapat bekerja.

3. Scheduled on-condition task

Scheduled on condition task atau predictive maintenance ini kegiatannya dibagi dalam 3 kelompok sebagai berikut:

a. Teknik condition monitoring

Teknik ini menggunakan peralatan khusus untuk melakukan monitor terhadap komponen. Tindakan maintenance yang diberikan dengan menggunakan teknik ini adalah pendeteksian kegagalan pada belt feeder yaitu dengan menggunakan alat ukur vibrationmeter.

b. Teknik *primary effect monitoring*Teknik ini menggunakan peralatan yang mampu memonitor *primary effect* (efek utama). Teknik ini dimonitor langsung oleh operator denganmengamati melalui sistem computer yangada di *centre control room* (CCR). Seperti pada mode kegagalan *roller* macet dan *gearbox* macet.

c. Teknik human sense

Penggunaan indera kemanusiaan yang dimiliki oleh operator (look, listen/sound, feel/touch & smell) untuk menemukan potential failure. Seperti pada pendeteksian kegagalan Load Cell dengan cara operator melihat langsungadanya ketidaksesuaian dalam pengukuran berat batu bara dan pada jenis kegagalan oli gearbox rembes.

3.5 Uji Distribusi

Dimulai dengan melakukan uji distribusi interval kerusakan dan selang terhadap perbaikan komponen lamanya sehingga diperoleh parameter distribusi menggunakan software Minitab 16. Parameter distribusi yang telah diperoleh digunakan dalam penentuan mean time to failure (MTTF) dan mean time to repair Hasil perhitungan (MTTR). **MTTF** menunjukkan bahwa semakin besar nilai MTTF dari suatu komponen maka hal ini menunjukkan bahwa peralatan memiliki rentang waktu kerusakan yang lama. Sebaliknya jika nilai MTTF pada suatu komponen kecil, maka hal ini berarti komponen tersebut semakin rentan untuk mengalami kerusakan.Berikut ini adalah tabel mengenai hasil uji distribusi T_F

Tabel 4. Rekap Hasil Pengujian Distribusi Tf dan MTTF Komponnen-komponen Kritis *Coal Feeder*

Equipment	Jenis Kerusakan	Jenis	Ket	Para	meter	MTTF
Equipment	Jenis Kerusakan	Distribusi	Itel	β	٦	(jam)
	Belt motion macet	Weibull	TTF	1.079	3969,44	3854,87
Belt motion	Belt motion roller putus	Weibull	TTF	1,887	2799,05	2484,32
	Pen sensor patah	Weibull	TTF	1,062	3604,39	3520,26
Roller Shaft	Roller patah	Weibull	TTF	1,511	5083,33	4584,72
Take Up Pulley	Bearing aus	Weibull	TTF	4,886	5048,22	4628,96
No Coal Switch	Sensor tidak bekerja	Weibull	TTF	1,268	5484,34	5091,18
Drive Pulley	Drive pulley bergeser	Weibull	TTF	1.805	5473,63	4866,56
	Belt feeder 10bek	Weibull	TTF	1,001	4086,46	4084,51
Belt feeder	Belt feeder aus	Weibull	TTF	1,596	4481,27	4018,59
	Sirip Belt feeder aus	Weibull	TTF	1,55	6516,36	5860,51
Clean out	Clean out macet	Weibull	TTF	1,092	2474,08	2392,81
Cisun out	Shearpin putus	Weibull	TTF	1,017	3099,9	3078,34
Chute Plug	Signal Palsu	Weibull	TTF	1.005	2239,2	2233,85

Sedangkan hasil rekapan uji distribusi waktu antar perbaikan disajikan pada Tabel 5.

Tabel 5. Rekap Hasil Pengujian Distribusi Tr dan MTTR Komponnen-komponen Kritis *Coal Feeder*

.	Jenis	Jenis	Ket		Parar	neter		MTTR
Equipment	Kerusakan	Distribusi	Ket	β	η	Щ	σ	(jam)
	Belt motion macet	Lognormal	TTR			0,171	0,432	1.302
Belt motion	Belt motion roller putus	Weibull	TTR	5.142	1.733			1.594
	Pen sensor patah	Weibull	TTR	2,48	2,529			2.243
Roller Shaft	Roller patah	Lognormal	TTR			0,652	0,742	2.529
Take up Pulley	Bearing aus	Weibull	TTR	1,849	1,111			0.987
No Coal Switch	Sensor tidak bekerja	Weibull	TTR	4.712	0,714			0,653
Drive Pulley	Drive pulley bergeser	Weibull	TTR	5.304	1,296			1.194
	Beit feeder robek	Lognormal	TTR			1.028	0.430	3.067
Belt feeder	Beit feeder aus	Weibull	TTR	2,651	0,746			0.663
	Sirip Belt feeder aus	Weibull	TTR	1,485	1,309			1.183
Clean out	Cleanout macet	Weibull	TTR	2.996	0,633			0,565
Cloun out	Shearpin putus	Lognormal	TTR			0.639	0,432	2.081
Chute Plug	Signal Palsu	Weibull	TTR	1.090	0,796			0,77

Dari hasil pengujian distribusi data menunjukkan bahwa komponen yang memiliki nilai waktu antar kerusakan tertinggi adalah sirip *belt feeder* aus yaitu 5860,51 jam, sedangkan komponen yang nilai MTTF nya paling rendah adalah munculnya signal palsu pada sensor *Chute plug* yaitu 2233,85jam.

3.6 Biaya Maintenance (C_M)

Untuk melakukan perhitungan biaya *maintenance* (C_M), maka data-data yang dibutuhkan adalah biaya atau gaji tenaga kerja yang melakukan tindakan *preventive maintenance* serta biaya material atau bahan yang digunakan untuk perawatan. Kegiatan perawatan secara rutin pada *Coal Feeder* dilakukan oleh dua orang petugas, dengan alokasi gaji yang disajikan pada Tabel 5.

Tabel 5. Perhitungan Gaji Kegiatan Perawatan

Tenaga Kerja	Gaji (Rp)	Jumlah	Total Gaji (Rp)			
	Gaji (Kp)	Personal	Per Bulan	Per Jam		
Petugas Pemeliharaan	7.000.000	2	14.000.000	87.500		

Jam kerja perusahaan dalam 1 hari adalah 8 jam dimana dalam 1 bulan terdapat 20 hari kerja sehingga jumlah jam kerja selama 1 bulan adalah 160 jam. Preventive maintenance yang dilakukan pada Coal Feeder meliputi pengecekan kondisi mesin, penambahan oli, pembersihan kalibrasi. Daftar material atau bahan yang digunakan dalam kegiatan perawatan preventive terdapat pada Tabel 6.

Tabel 6. Daftar Material untuk *Preventive*

	маниенансе									
No.	Item	Konsumsi per-bulan	Harga per-liter (Rp)	Konsumsi per jam (liter)	Harga (Rp)/jam					
1.	Lubricating Oil	100 liter/ bulan	34.000	0,139	4.722					

Sehingga dari data gaji tenaga kerja untuk kegiatan perawatan dan material untuk *preventive maintenence* di atas dapat diketahui alokasi biaya untuk *maintenance* (C_M) sebagai berikut:

Tabel 7. Alokasi biaya untuk maintenance (C_M)

Komponen Biaya	Besarnya biaya per-jam
Biaya Pekerja	Rp. 87.500
Biaya Material	Rp. 4.722
Total	Rp. 92.222

3.7 Biaya Perbaikan (C_R)

Biaya perbaikan timbul akibat adanya komponen *Coal Feeder* yang mengalami kerusakan atau kegagalan dan membutuhkan perbaikan atau penggantian komponen. Biaya perbaikan (C_R) terdiri dari biaya *man hours* (C_W) , biaya pemulihan atau penggantian komponen (C_F) , dan biayakonsekuensi operasional akibat mesin tidak beroperasi (C_O) .

1. Biaya Man Hours (C_W)

Tenaga kerja tersebut berjumlah 5 orang yang terdiri dari 1 orang supervisor, dan 4 orang pelaksana. Dimana jumlah jam kerja perusahaan selama satu bulan adalah 160 jam. Perhitungan biaya *man hours* dapat dilihat pada tabel 8.

Tabel 8. Perhitungan Gaji untuk Kegiatan Perawatan Perbaikan

	1 Crawatan 1 Croancan									
	Gaji		Jum	Total (Gaji					
Tenag a Kerja	Per-bulan (Rp)	Per- jam (Rp)	lah Pers onel	Per-bulan (Rp)	Per-jam (Rp)					
Superv isor Pemeli haraan	9.000.000	56.250	1	9.000.000	56.250					
Pemeli haraan /Meka nik	7.000.000	43.750	2	14.000.000	87.500					
Pemeli haraan /Instru men	7.000.000	43.750	2	14.000.000	87.500					
	Total			37.000.000	231.250					

Jadi total biaya untuk tenaga kerja yang dikeluarkan oleh perusahaan untuk kegiatan perbaikan (C_w) adalah sebesar Rp. 231.250,00 per jam dengan asumsi bahwa seluruh tenaga kerja tersebut *available* untuk melakukan kegiatan perawatan atau perbaikan.

2. Biaya konsekuensi operasional (C₀)

Biaya konsekuensi operasional merupakan biaya yang timbul akibat terjadinya downtime pada Coal Feeder. Hal tersebut menyebabkan perusahaan mengalami kerugian. Jika pada PLTU Paiton berkapasitas 400 MW dengan harga 1 KWH adalah Rp. 800,00 maka besarnya biaya konsekuensi operasional yang akan diterima oleh perusahaansebagai berikut:

 $C_0 = Rp. 800,00/kWh \times (400 \times 10^3) kW$

= Rp.320.000.000,00/jam

3. Biaya penggantian komponen (C_F)

Biaya ini timbul akibat adanya kerusakan dari komponen atau peralatan Feeder membutuhkan Coal yang penggantian komponenya, pada diasumsikan dengan menggunakan harga komponen Coal Feeder secara umum dengan persetujuan pihak perusahaan karena adanya kebijakan data asset merupakan rahasia perusahaan, maka harga komponen dari Coal Feeder.Berikut ini adalah rekap dari perhitungan biaya perbaikan disajikan pada Tabel 9.

Tabel 9. Rekap Biaya Perbaikan (C_R)

Equipment	Jenis Kerusakan	C _F	Cw	c _o	MTTR	CR
	Belt motion macet	Rp. 0,00	231.250	320×10 ⁶	1,302	Rp. 416.941.087,50
Belt motion	Belt motion roller putus	Rp. 3.340,95	231.250	320×10 ⁶	1,594	Rp. 510.451.953,45
	Pen sensor patah	Rp. 2.840,70	231.250	320×10 ⁶	2,243	Rp. 718.281.534,45
Roller Shaft	Roller patah	Rp. 1.199,64	231.250	320×10 ⁶	2,529	Rp. 809.866.030,89
Take Up Pulley	Bearing aus	Rp. 799,32	231.250	320×10 ⁶	0,987	Rp. 316.069.04307
No Coal Switch	Sensor tidak bekerja	Rp. 0,00	231.250	320×10 ⁶	0,653	Rp. 209.111.00625
Drive Pulley	Drive Pulley bergeser	Rp. 3.082,26	231.250	320×10 ⁶	1,194	Rp. 382.359.194,76
	Belt feeder robek	Rp. 2.448,27	231.250	320×10 ⁶	3,067	Rp. 982.151.692,02
Belt feeder	Belt feeder aus	Rp. 2.488,43	231.250	320×10 ⁶	0,663	Rp. 212.315.807,18
	Sirip belt feeder aus	Rp. 1.706,34	231.250	320×10 ⁶	1,183	Rp. 378.835.275,09
Clean Out	Clean out macet	Rp. 0,00	231.250	320×10 ⁶	0,565	Rp. 180.930.65625
Cisan Ola	Shearpin putus	Rp. 3.216,02	231.250	320×10 ⁶	2,081	Rp. 666.404.44727
Chute Plug	Muncul signal palsu	Rp. 0,00	231.250	320×10 ^s	0,770	Rp. 246.578.06250

3.8 Interval Perawatan Optimal (TM)

Penentuan T_M dilakukan dengan mempertimbangkan biaya yang dikeluarkan untuk perawatan (C_M) , biaya untuk perbaikan (C_R) serta nilai dari waktu antar perbaikan (MTTR). Oleh karena itu besarnya biaya yang dikeluarkan untuk perawatan dan perbaikan harus ditentukan terlebih dahulu sebelum menghitung nilai interval perawatan optimal (T_M) .

Berdasarkan perhitungan interval perawatan optimal (T_M), maka dapat diketahui bahwa besarnya nilai T_M lebih rendah dari nilai MTTFnya. Hal ini menunjukkan bahwa interval perawatan yang disarankan tidak melebihi waktu kegagalannya sehingga dapat kegagalan. meminimalkan terjadinya Untuk lebih lengkapnya dapat dilihat pada Tabel mengenai rekap perhitungan TM dengan nilai MTTFnya.

Tabel 10. Rekap Hasil Perhitungan TM dengan Nilai MTTF

-	7	m (*)	A COUNTY (1)		
Equipment	Jenis kerusakan	T _M (jam)	MTTF (jam)		
	Belt motion macet	17,09	3854,87		
Belt motion	Belt motion roller putus	30,98	2484,32		
	Pen sensor patah	10,71	3520,26		
Roller Shaft	Roller patah	19,46	4584,72		
Take Up Pulley	Bearing aus	722,82	4628,96		
No Coal Switch	Sensor tidak bekerja	34,99	5091,18		
Drive Pulley	Drive Pulley bergeser	61,14	4866,56		
	Belt feeder robek	384,65	4084,51		
Dalt fanden	Belt feeder aus	48,50	4018,59		
Belt feeder	Sirip belt feeder aus	44,69	5860,51		
Class Out	Clean out macet	21,24	2392,81		
Clean Out	Shearpin putus	27,35	3078,34		
Chute Plug	Muncul signal palsu	169,73	2233,85		

Berdasarkan Tabel 10. menunjukkan bahwa interval waktu perawatan optimal (T_M) bertujuan untuk menghindari dan

mencegah terjadinya kegagalan (failure) pada komponen sebelum kegagalan tersebut terjadi.

3.9 Keandalan dan Total Biaya Perawatan (T_C)

Setelah menghitung interval perawatan optimal (T_M), mengetahui interval perawatan aktual (TA) dan telah dihitung pula keandalan aktualnya R(t)A dan nilai keandalan berdasarkan interval perawatan optimal R(t). Dari perhitungan ternyata nilai keandalan dapat ditingkatkan dan total biaya pada komponen-komponen kritis dapat diturunkan.

Peningkatan keandalan terbesar terdapat pada komponen clean out dengan jenis kerusakan berupa clean out macet, persentase peningkatan keandalan sebesar 57,22%. Untuk komponen yang memiliki peningkatan keandalan terkecil pada take up pulley dengan jenis kerusakan bearing macet, peningkatan keandalannya sebesar 1.56%. Hal ini teriadi karena nilai keandalan aktual dan keandalan berdasarkan T_M telah menduduki posisi tertinggi sehingga peningkatannya tidak terlalu banyak dan dikarenakan kerusakan jenis ini sangat jarang terjadi.Berikut ini adalah rekap hasil perhitungan keandalan.

Tabel 11. Rekap Hasil Perhitungan Keandalan dan Persentase Kegagalan

Equipment	Jenis kerusakan	T_{M}	R(t)	Q(t)
	Belt motion macet	17,09	0,9972	0,28%
Belt motion	Belt motion roller putus	30,98	0,9998	0,02%
	Pen sensor patah	10,71	0,9979	0,21%
Roller Shaft Roller patah		19,46	0,9998	0,02%
Take Up Pulley	Bearing aus	722,82	0,9999	0,01%
No Coal Switch	Sensor tidak bekerja	34,99	0,9984	0,16%
Drive Pulley	Drive Pulley bergeser	61,14	0,9997	0,03%
Belt feeder	Belt feeder robek	384,65	0,9104	8,96%
	Belt feeder aus	48,50	0,9993	0,07%
	Sirip belt feeder aus	44,69	0,9996	0,04%
Clean Out	Clean out macet	21,24	0,9945	0,55%
	Shearpin putus	27,35	0,9919	0,81%
Chute Plug	Muncul signal palsu	169,73	0,9279	7,21%

Kemudian untuk total biaya perawatan seluruhnya mengalami penurunan biaya perawatan. Penurunan total biaya perawatan terbesar berdasarkan selisih dari biaya perawatan aktual dan biaya usulan terdapat pada komponen *belt motion* dengan jenis kerusakan *belt motion roller* putus sebesar Rp. 138.620,86 dan selisih total biaya perawatan terkecil terdapat pada *belt feeder* robek sebesar Rp.

217,04. Penurunan total biaya perawatan dan peningkatan keandalan dapat dijadikan usulan interval perawatan optimal pada komponen *Coal Feeder*. Berikut ini adalah hasil rekap perhitungan total biaya perawatan.

Tabel 12. Rekap Total Biava Perawatan (T_C)

Tabel 12. Rekap Total Blaya Terawatan (1)									
Equipment	Jenis kerusakan	T _M (jam)	T_{C}						
	Belt motion macet	17,09	Rp. 73.698,11						
Belt motion	Belt motion roller putus	30,98	Rp. 6.334,47						
	Pen sensor patah	10,71	Rp. 147.537,72						
Roller Shaft	Roller patah	19,46	Rp. 14.011,09						
Take Up Pulley	Bearing aus	722,82	Rp. 160,43						
No Coal Switch	Sensor tidak bekerja	34,99	Rp. 12.474,51						
Drive Pulley	Drive Pulley bergeser	61,14	Rp. 3.382,83						
	Belt feeder robek	384,65	Rp. 240.015,38						
Belt feeder	Belt feeder aus	48,50	Rp. 5.093,38						
	Sirip <i>belt</i> feeder aus	44,69	Rp. 5.816,42						
Clean Out	Clean out macet	21,24	Rp. 51.548,49						
Ciean Oal	Shearpin putus	27,35	Rp. 201.737,16						
Chute Plug	Muncul signal palsu	169,73	Rp. 109.250,94						

3.10 Usulan Perbaikan Tindakan Perawatan dan Jadwal Perawatan Optimal

Sumber informasi tindakan perawatan yang akan dilakukan dapat dilihat pada Tabel 3.RCM II Decision Worksheet pada Coal Feeder dengan mengacu pada proposed task dan interval waktu perawatan optimal.

Berikut ini adalah contoh usulan jadwal perawatan berdasarkan interval waktu perawatan optimal (T_M). Usulan jadwal perawatan dilakukan berdasarkan jenis kegagalan pada masing-masing komponen *Coal Feeder*. Jadwal perawatan tersebut dilakukan untuk mengontrol kondisi mesin dalam bentuk *checklist* dengan 3 kriteria kondisi, yaitu:

- 1. Periksa (P)
- 2. Tindakan: memberikan pelumas dan membersihkan (T)
- 3. Ganti (G)

Tiga kriteria tersebut digunakan untuk memberikan informasi terhadap kondisi masing-masing komponen *Coal Feeder*. Berikut ini adalah contoh usulan jadwal perawatan dimulai dari jam ke 00.00 WIB pada minggu ke empat bulan Januari 2014 pada Tabel 13.

Tabel 13. Usulan Jadwal Perawatan bulan Januari Minggu Ke-4

•	Jan	u	al I	IVI	mg	gu	V	3 -4	+		_			
Coal Feeder	Bulan: Januari 2014													
Komponen	Minggu Ke-4													
1. Belt Motion	Soni			272	Ro	bu	Kar	nia.	Jum	Jumat Sabtu			Min;	gu
Belt motion macet	17		34		51 68		85		102		119		153	
Belt motion roller puts			30	-	60	-	90	-	120	Н	150	-		
,	10	_	30		50	-	80	\vdash	100	Н	130	-	150	_
Pen sensor publi	20		40		60 70		90	Г	110		140		160	
2. Load Cdl	Soni		Sel	2372	Ro	bu	Kar	i.	Jum	et.	Sabe		Minggu	
Kegagalan Fungsi dalam pengukuran														Ť
3. Roller Shaft Senin Selasa Rabu Kamis Jumat Sabtu Minggu														7711
Roller patah	19		38		57		76 95	F	111		130		149	Ť
Roller macet														+
		_					_							_
4. No Coal Switch	Soni		Sci	272	Ro	bu	Kar	ris.	Jum	of .	Sabt	u	Minggu	
Sensor tidak bekerja			34	34		68					136			_
		_					_	_						_
5. Drive Pulley	Seni		Sel	Sclara		Rabu		Komia		st.	Sabt	u u	Min	433
Drive pulley bergener					61						122			
Gearbox macet														
Oli carbox rember	П													
6. Take Up Pulky	Seni	8	Sci	272	Ra	bu	Kar	ria .	Jum	at .	Sabt	u u	Min	gu
Bearing macet												П		
7. Belt Feeder	Seni	8	Sci	272	Ra	bш	Kar	ria.	Jum	at.	Sabt	u	Min	gu.
Belt feeder robek														
Belt feeder sus					49				98				147	
Belt feeder kender														
Sing feeder our					45		90		135					
8. Clanout	Seni			2372		bu	Kar	ė	Jum	М	Sabt	4	Min	gu
Shoupin putus			27		54		81		108		135		162	
Cleanout macet	21		42		63		84		105		126		147	
9. Sensor Chute Plug	Seni		Sci	272	Ra	bu	Kar	nia.	Jum	zi.	Sabtu		Mingg	2
Muncul signal palsu														
Keterangan: = - Tidak dilalakan		_	_	-w-	len de	lam i								

Berdasarkan Tabel 7 dapat diketahui bahwa kegiatan perawatan untuk Coal Feeder berdasarkan waktu interval perawatan optimal. Lembar kontrol tersebut diisi sesuai kode yang telah sebelumnya disebutkan berdasarkan kondisi suatu komponen pada mesin Coal Feeder.

Keuntungan adanya lembar dari kontrol tersebut dapat meminimalkan terjadinya kegagalan fungsi pada komponen-komponen Coal Feeder. Rekomendasi jadwal perawatan dilakukan berdasarkan T_M pada jenis kegagalan masing-masing komponen dan aktivitas perawatannya berdasarkan kondisi dari suatu komponen tersebut.

4. Penutup

Berdasarkan hasil pengolahan dan analisa data yang telah dilakukan pada bab sebelumnya, maka diperoleh kesimpulan sebagai berikut:

- Hasil penilaian resiko dengan risk 1. priority number (RPN) yang diberikan dalam RCM II information worksheet atau FMEA menunjukkan bahwa komponen kritis vang perlu mendapatkan prioritas utama atau memiliki tingkat kepentingan tinggi diperhatikan (need attention) adalah kegagalan fungsi (functional failure) pada shearpin putus, cleanout macet, belt feeder aus, dan signal palsu Chute plug dengan nilai RPN masing-masing adalah 15.
- 2. Jenis perawatan untuk mesin *Coal Feeder* berdasarkan interval pada masing-masing jenis kegagalan komponen *Coal Feeder* dalam bentuk lembar kontrol. Hal tersebut ditujukan untuk menjaga kondisi mesin agar selalu dalam keadaan siap pakai dan meminimalkan terjadinya kegagalan.
- 3. Berdasarkan hasil perhitungan interval perawatan optimal $(T_{\rm M})$ biava dengan mempertimbangkan maintenance dan biaya $(C_{\rm M})$ perbaikan (C_R), maka dapat diketahui perawatan nilai interval bahwa optimal (T_M) yang diperoleh untuk mencegah kegagalan pada komponen Coal Feeder lebih kecil dari nilai MTTFnya. Hal ini menunjukkan dengan waktu interval bahwa perawatan optimal (T_M), maka akan berusaha untuk mencegah terjadinya kegagalan fungsi komponen sebelum kerusakan terjadi. Hasi perhitungan T_M dapat meningkatkan keandalan dan meminimalkan biaya perawatan seperti pada berikut ini:
 - a. Terjadi peningkatan keandalan dan penurunan total biaya perawatan (T_C) untuk semua komponen-komponen kritis. Peningkatan keandalan terbesar terdapat pada clean out macet sebesar 57,22% dan terkecil terdapat pada take up pulley dengan jenis kerusakan bearing aus sebesar 1,56%.
 - b. Selain itu terdapat penurunan total biaya perawatan terbesar terdapat pada komponen *belt motion* dengan jenis kerusakan *roller belt motion* putus sebesar Rp. 138.620,86 dan penurunan total biaya perawatan terkecil sebesar

Rp. 217,04 dengan jenis kegagalan belt feeder robek. Dalam hal ini interval perawatan untuk seluruh komponen kritis dapat dijadikan kebijakan perawatan yang optimal pada mesin *Coal Feeder*.

Daftar Pustaka

Ebelling, E, Charles. (1997), An Introduction to Reliability and Maintainability Engineering, Singapore.

Heizer, Jey dan Barry, Render (2010), *Manajemen Operasi*, Jakarta: Salemba Empat.

PT. Pembangkitan Jawa-Bali Unit Pembangkitan Paiton (2013), Paiton.

Pujotomo, Darminto dan Septiawan, Heppy.

http://ejournal.undip.ac.id/index.php/jgti/ar ticle/view/2242, diakses pada 4 Februari 2013.

Sudradjat, Ating (2011), *Pedoman Praktis Manajemen Perawatan Mesin Industri*, Jakarta: efika Aditama.

Sutanto, Fajar Ardyantara. 22 Maret 2013. http://digilib.its.ac.id/ITS-Undergraduate-21001120000247/19639.

Lampiran 1. Failure Modes and Effect Analysis (FMEA) pada Coal Feeder

RCM	II	Sist	em: Coal Feeder													
INFORMATION		Sub	Sub sistem:													
WORK	KSHEET	Fur	ngsi sub sistem: Menyuplai bat	ubara	dari Silo ke Mill											
No	No Equipment		Function	Function Failure			Failure mode	Effect of failure								
1	Belt motion	1	Alat untuk mengukur kecepatan putaran pada <i>belt</i> <i>feeder</i>	1	Gagal melakukan pengukuran kecepatan	2	Belt motion macet Belt motion roller putus	Jumlah produksi MWH menurun sebesar 8 % dari 400 MV								
						3	Pen sensor patah	Sensor akan berhenti dan <i>Coal Feeder</i> mati atau trip, sehingga jumlah produksi MWH menurun sebesar 8 % dari 400 MW.								
2	Load cell	1	Alat untuk mengukur berat batu bara yang melewati <i>belt</i> <i>feeder</i>	1	Gagal melakukan pengukuran berat batubara	1	Kegagalan fungsi dalam pengukuran	Mempengaruhi jumlah batubara yang masuk ke boiler yang berdampak penghitungan <i>overall</i> efisiensi tidak akurat.								
3	Roller Shaft	1	Alat penahan belt feeder	1	Gagal bekerja	2	Roller patah Roll macet	Jumlah produksi MWH menurun sebesar 8 % dari 400 MW.								
4	No Coal Switch	1	Alat untuk menghentikan sistem jika didalam feeder tidak terdapat batubara	1	Gagal melakukan sensor pada batubara		Sensor tidak bekerja	Internal combustion di Mill.								
5	Drive Pulely	1	Motor penggerak	1	Gagal berputar menggerakkan belt feeder	1	Drive Pulely bergeser	Internal combustion di Mill.								
				2	Gangguan pada gearbox	1	Gearbox macet	Drive Pulely berhenti Coal Feeder mati / trip, jumlah produksi MWH menurun sebesar 8 % dari 400 MW								
6	Take Up Pully	1	Mengikuti gerak drive pully	1	Gagal berputar	1	Bearing aus	Jumlah produksi MWH menurun sebesar 8 % dari 400 MW								
7	Belt feeder	1	Pembawa batubara	1	Gagal berputar	1	Belt feeder robek	Batubara tumpah								
					membawa batubara	2	Belt feeder aus	- Slip -Tidak dapat dikalibrasi								
						3	Belt feeder kendor	- Internal combustion di Mill. -Tidak dapat dikalibrasi								
						4	Sirip belt feeder aus	Belt feeder robek apabila tumpahan terlalu banyak								
8	Clean Out	1	Sebagai pembersih batubara	1	Gagal melakukan proses	1	Shearpin putus	Belt feeder robek apabila tumpahan terlalu banyak								
			yang jatuh berserakan		cleaning	2	Clean Out macet	Belt feeder robek apabila tumpahan terlalu banyak								
9	Sensor Chute plug	1	Sebagai sensor jika terjadi penyumbatan	1	Gagal melakukan sensor penyumbatan	1	Muncul signal palsu	Terjadi penyumbatan / plugging pada output Coal Feeder								

Lampiran 2. RCM II Decision Worksheet pada Coal Feeder

RCN	1 II DECISIO	10	: Coal Feeder													Date:	Sheet no:
	RKSHEET	Sub sis		olai batubara dari <i>Sila</i>	a ka M	f;II											Of:
			•	nai batubara dari 500		Conse	quenc	e	H1	H2	Н3	De	efaul	lt			OI.
		Information	Keierence			Evalu	ation		S1	S2	S3		ctio		Proposed Task	Initial Interval (jam)	Can be
No	Equipme nt	F	FF	FM	Н	S	E	0	E1 O1	E2 O2	E3	H 4	H 5	S 4	Troposed Tush	iniciai inici vai (jain)	done by
1	Belt	Alat untuk mengukur	Gagal melakukan	Belt motion macet	Y	N	N	Y	N	Y					Scheduled restoration task	17,09	Maintenance
	motion	kecepatan putaran pada <i>belt feeder</i>	proses pengukuran	Belt motion roller putus	Y	N	N	Y	N	N	Y				Scheduled discard task	30,98	Maintenance
			kecepatan	Pen sensor patah	Y	N	N	Y	N	N	Y				Scheduled discard task	10,71	Maintenance
2	Load cell	Alat untuk mengukur berat batu bara yang melewati belt feeder	Gagal melakukan proses pengukuran berat batubara	Kegagalan fungsi dalam pengukuran	Y	N	N	Y	Y						Scheduled on-condition task	Several days to week	Maintenance
3	Roller Shaft	Alat penahan belt feeder	Gagal bekerja	Roller patah	Y	N	N	Y	N	N	Y				Scheduled discard task	19,46	Maintenance
	Snagi	jecuer		Roll macet	Y	N	N	Y	Y						Scheduled on-condition task	Several days to week	Maintenance
4	No Coal Switch	Alat untuk menghentikan sistem jika didalam feeder tidak terdapat batubara	Gagal melakukan sensor pada batubara	Sensor tidak bekerja	Y	N	N	Y	N	Y					Scheduled restoration task	34,99	Maintenance
5	Drive Pulley	Motor penggerak	Gagal berputar menggerakkan belt feeder	Drive pulley bergeser	Y	N	N	Y	N	N	Y				Scheduled discard task	61,14	Maintenance
			Gangguan pada	Gearbox macet	Y	N	N	Y	Y						Scheduled on-condition task	Several days to week	Maintenance
			gearbox	Oli gearbox rembes	Y	N	N	Y	Y						Scheduled on-condition task	Several days to week	Maintenance
6	Take Up Pully	Mengikuti gerak drive pully	Gagal berputar	Bearing macet	Y	N	N	Y	N	N	Y				Scheduled discard task	722,82	Maintenance
7	7 Belt	Pembawa batubara	Gagal berputar membawa batubara	Belt feeder robek	Y	N	N	Y	N	N	Y				Scheduled discard task	384,65	Maintenance
	feeder			Belt feeder aus	Y	N	N	Y	N	N	Y				Scheduled discard task	48,50	Maintenance
				Belt feeder kendor	Y	N	N	Y	Y						Scheduled on-condition task	Several days to week	Maintenance
				Sirip belt feeder aus	Y	N	N	Y	N	N	Y				Scheduled discard task	44,69	Maintenance
8	Clean Out	Sebagai pembersih	Gagal melakukan	Shearpin putus	Y	N	N	Y	N	N	Y				Scheduled discard task	27,35	Maintenance
		batubara yang jatuh berserakan	proses cleaning	Clean Out macet	Y	N	N	Y	N	Y					Scheduled restoration task	21,24	Maintenance
9	Sensor cute plug	Sebagai sensor jika terjadi penyumbatan	Gagal melakukan sensor penyumbatan	Muncul signal palsu	Y	N	N	Y	N	Y					Scheduled restoration task	169,73	Maintenance